数学论文十篇-欧洲杯买球平台

时间:2023-04-10 21:09:01 欧洲杯买球平台的版权声明

数学论文

数学论文篇1

文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是,但起源是商业文化。即使是也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

④⑤⑥(美)h·伊夫斯《数学史概论》,山西人民出版社。

数学论文篇2

大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。

我的肚子莫名其妙地奏起了狂响曲,“好饿啊——”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!

于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。

过了一会儿,我终于豁然开朗,我不能用量杯,先在里面装些水,记下水位。随后把那个苹果放入水中,此时的水位上升了不少,再记下上升后的水位。最后用上升后的水位,减去先前的水位,不就算出苹果的体积了吗?我高兴极了,向妈妈汇报了实验结果,妈妈这回是满意的笑了。

数学论文篇3

现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。

在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?

例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。

再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。

正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。

……

由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。

瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?

至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.

正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.

可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域。

今天的内容就介绍到这里了。

【拓展延伸】

初中数学小论文怎么写

一、论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

二、论文选题:新颖,有意义,力所能及

要求:

1.有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。

2.有价值.

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

数学论文篇4

从教以来,笔者不断思考的一个问题,就是如何使这些学生愉快而有效地学习数学。笔者发现,对于这些学生而言,单纯地在数学框架内按部就班地讲授数学,不仅使他们因感觉枯燥困难而沮丧,而且还容易使他们产生只见树木、不见森林的迷失感;但若将要学习的数学知识放在数学思想发展的长河中,放在科学甚至社会的大背景下,则其思想起源和发展演进就比较生动,其内容、方法和结论也就比较容易理解和接受了。这就是说,在数学教学中有机融入数学文化,是解决上述学生数学学习问题的一个好办法。笔者的大致做法是,基本保持原来的课程结构,但在课程呈现方式上遵循如下几条基本原则:①以逻辑结构和历史进程为经纬串联、划分教学内容,在讲清形式逻辑体系的基础上勾勒其时空演进线索,力争使学生对课程内容有全方位、立体化的动态感觉和宏观把握。②尽量选取历史名题为例题,通过对问题的介绍、分析和解决,展示数学思想和数学方法的发展过程,引导学生由单纯的课程学习发展对数学方法论的领悟,并通过榜样的激励作用鼓舞斗志、增强信心。③借助各种背景知识归纳、演绎和诠释抽象内容,力求引导学生实现数学学习的某种升华、进一步提升其数学素养。④数学文化的融入必须适时、适量、适当、有效,即穿插要适时、取舍要适量、讲解要适当、使用要有效,否则就可能弄巧成拙、适得其反。在前两轮试验中,从课堂气氛、出勤率、课下讨论以及教务处的问卷调查来看,这种教学方法是受学生欢迎的;从期末考试(教考分离、流水阅卷)卷面成绩的初步统计结果来看,这种教学方法对于学生准确理解和灵活应用所学知识也似有积极作用。当然,在数学主干课程中更全面、有机地融入数学文化并科学鉴定其效果,需要更长期细致的试验和更科学的分析比较。

二、数学史选修课:如何变消极被动听课为主动学习、积极探讨

数学史是数学文化的重要方面,也是数学专业学生专业文化素养的重要组成部分。第一次开课时,我首先采用的是传统的课堂讲授模式。但很快发现许多学生都是边听课边干自己的事情,听到有趣的故事就抬起头来笑笑,然后又接着背单词、做习题。老实说,我感觉数学史是我所讲过的所有课程中最难讲的,我准备这门课程的工作量远远超过其他任何一门课程。我认为,面向数学专业学生开设的数学史,不应是“名人轶事”或者“数学趣闻录”,而应当尽量系统而有机地分析探讨数学思想发展的内外史,但以我的知识和能力,准确理解并尽可能清晰通俗地表述这些思想绝非易事。事实上,对于100分钟的课,我往往要准备好几天。因此,学生学习这门课程的态度让我很失落。我决定改变教学方法。几经调整,我最后采取的方法是每学期第一次课给出一学期的教学目录,请学生选择其中自己感兴趣的专题单独或合作进行准备。在课程进行到该专题时,先由这些学生作为时20分钟的演讲,演讲之后回答其他学生的提问,最后我再根据情况对该部分内容进行补充完善或整体讲解。几年来,学生们普遍反映,他们通过该课程的学习开阔了眼界,不仅对数学知识的掌握更全面、对数学思想的理解更深入、对数学发展动态的认识更清醒,而且对数学有了更深的感情。许多学生建议应该更早开设这门课程。

三、东西方数学文化选讲:多侧面多角度地欣赏、感受数学文化的窗口

由于学生之间数学基础差异巨大,欲使所有到课者都能通过课堂教学这扇小小的窗户多侧面多角度地欣赏、感受数学文化,首先要审慎定夺课程内容,其次要特别注意教学内容的引入、叙述和展开方式。开课前已经以选择能突出展示数学思想演进、数学方法发展、杰出数学家的重要作用、数学现状、数学与其他科学或与社会生活各个方面的联系,覆盖面广且有一定趣味性的内容为宗旨,拟订了课程目录和教学大纲,确定了尽可能用比较通俗的语言深入浅出地讲解的教学方针。但面对这些学生,教学内容还是几经调整,最后确定为:1)河谷晨曦———数学的起源与早期发展。2)西方理性———古希腊数学与演绎证明。3)东方神韵———中世纪的东方数学与算法精神。4)通向光明的甬道———基督教文化与中世纪的欧洲数学。5)永恒的坐标———解析几何的诞生及影响。6)站在巨人的肩膀上———微积分的建立。7)“分析时代”掠影———18世纪的几位重要数学家及其对微积分的贡献。8)空间中的数———神圣的几何。9)数学与时空———非欧几何史话。10)从七桥问题到庞加莱猜想———拓扑学漫谈。11)天衣有缝———三次数学危机始末。12)上帝掷骰子吗?———随机数学撷趣。13)走近非线性———孤子、分形史话。14)飞舞的电波———关于现代大众通讯和保密通讯中的数学故事。15)数学与社会———数学的社会化与社会的数学化。虽然少数纯文科学生反映对于非欧几何、拓扑学等现代数学学科中的某些概念和思想理解起来还有些吃力,但从学生有趣的读书报告和热烈的课堂反应来看,这些内容的教学是顺利的。另外,绝大多数学生在学习心得和问卷调查中都对这门课程的开设和课程内容非常认可。

四、结语

数学论文篇5

1.1文理科学生数学基础不同

高中文、理科学生所学数学的内容不同,对每个知识点的要求也不尽相同.文科学生往往对数学缺少兴趣,信心不足,同时教师对文科生数学要求一般不高,这些因素使得文科学生在高中时数学基础普遍较薄.理科学生选择理科一般是出于对数学的喜爱,喜欢主动研究数学问题,学习内容全面完整,逻辑思维敏捷,解决问题方法多样,基础远比文科学生扎实.

1.2文理科学生思维方式不同

文、理科学生在数学思维方式上有较大差异.教学过程结束后,理科学生会积极主动地对知识点进行概括总结,及时提炼其中的信息;而文科学生积极性较差,并且总结信息往往不完整.不仅如此,文科学生的逻辑推理能力也较理科学生差,他们往往根据直觉进行推理,而理科学生更擅长寻找依据.在提出数学问题,探求数学结论,探索解题途径,寻找解题规律等方面,理科学生也都明显好于文科学生.

1.3对教师教学方法适应程度不同

在高中数学教学中,教师对知识讲授详细,方法归纳完整,利用大量的精力“题海战术”培养学生的技能技巧.而在高等数学教学中,由于知识点较多但课时有限,教师更注重概念和原理的掌握,对思想方法的深刻理解.理科学生在高中经过系统的数学学习使得他们较容易适应大学高等数学的教学模式和教学方法.

2提高文理兼收专业高等数学教学质量的方法

2.1合理选用教材

教师传授知识的目的是培养学生的抽象思维和分析问题、解决问题的能力,目前许多高校的高等数学教材带有随意性,教材内容针对性不强.选用教材时不必一味的追求全校统一,特别是文理兼收专业,可以根据学生的实际情况选定教材,使他们容易接受和理解,提高他们学习的自信心.选定合适教材后,当然也需要合理安排教学内容.

2.2分层教学,分层辅导

分层教学就是教师根据学生现有的知识、能力水平和潜力倾向把学生科学地分成几组各自水平相近的群体并区别对待,这些群体在教师恰当的分层策略和相互作用中得到最好的发展和提高.可将学生分为基础好、基础一般和基础差三个层次,在备课、讲课和练习等方面实行分层教学,一个班级,三种要求.在教学时,向不同层次的学生提出不同的问题,在练习时,不同层次的学生提不同的要求.对于基础较差学习有困难的学生,可以布置基础类作业,这类作业份量要少,难度偏低,便于模仿,通过练习使这类学生也有成就感;对于学习一般的学生,可以布置中等难度的作业,作业内容可以是基础知识和基本技能的训练,通过一定量的训练,提高这类学生的学习能力;对于基础好的学生,可以布置难度较高的作业,这类作业应具有创新性,且综合性比前两种层次学生的作业要高,而且要求学生寻找多种解题方法,这样可以培养基础较好学生的认知能力和创新能力,当然这种方法对教师的教学水平提出了更高的要求.

2.3多种方式并用提高学生积极性

数学论文篇6

数学文化可以分为广义数学文化和狭义数学文化。广义的数学文化认为数学在本质上就可称为一种文化,科学文化是包含了数学文化的,并且数学文化是把数学科学体系作为其文化的核心,把数学的思想、精神、知识等所覆盖的相关文化范畴作为一个具有强大精神和物质功能的动态有机组合系统。然而,从狭义上来讲,数学文化就是指数学的思想、精神、观点等的形成与发展。当数学教育不再仅仅只是简单的知识传授过程的时候,数学文化教育就已经上升为数学文化意识。数学文化意识是一种数学文化交流活动,而学生在学习数学文化的过程中,可以充分感受与体验到数学文化独有的魅力,同时产生相应的数学文化共鸣,从中体会数学文化的精髓,并将数学文化所承载的精神贯彻到学习生活中。获得这样的教学结果是所以教育者的最终期盼,也是符合当代教育理念的。

二、在高等师范学校教学中渗透数学文化的意义

为了让学生更多的了解数学前辈们在过去不断专研、刻苦努力的精神以及具有启发性的教学经验,所以不断要求学生追寻数学家们成长的足迹。数学家们成长的足迹在一定程度上可以激励学生不断创造,勇往直前追寻科学创造,从而养成科学理性的思维判断以及锲而不舍的求知精神。在数学文化教育中,教育者在讲解数学家的生平事迹时,可以适当介绍数学家的高尚情操以及求知精神等,更好的帮助学生树立自己的学习目标以及增强克服困难的勇气。

三、在高等师范学校数学教学中渗透数学文化的途径

(1)在各章引言中渗透数学文化在教学中开设引言课主要是为了让学生更好的了解本章的学习内容以及知识构架,同时也便于老师引导学生明白本章的学习重点。例如在学习复数的时候,其引言中就向学生简单介绍了有理数、无理数、整数、虚数等的产生与发展过程,同时也可以引经据典讲诉一些科学家的事迹,让学生了解数学知识的发展过程。通过引言课的讲解,使学生不仅仅了解了复数的知识背景,也能够更好的调动学生的学习积极性与主动性。

(2)在讲述概念时渗透数学文化数学文化中某些概念的形成都是以一定的人文背景作为基础的,通过对概念的不断分析与讲解,可以在一定程度上刺激学生的学习激情,让学生感受到数学概念中所蕴含的浓厚历史文化背景;同样的,也可以使学生感受到数学前辈们在专研数学时所付出的艰辛与执着。在数学文化教学中,老师可以充分利用相关的人文背景资料,对学生进行教育。在进行数学概念讲解时,可以不断加深数学文化的讲解,使学生感受到数学文化所蕴含的美。从数学概念内涵上讲,其具有高层次的内在、和谐以及智慧美、逻辑美、以及精确美。对于西方人来讲,数学被称为“精密科学”,例如,一个数列从第二项起,它的每一项与前一项的差都是相同的常数,那么这个数列就被称之为等差数列。所以,英国数学家怀特海认为“在进行推演过程中,推断出完整模式的逻辑推理是一种普遍的审美性质”。从而可以说明数学逻辑推理中包含了美的元素。

(3)在思想方法中渗透数学文化数学教学内容的重要内容是数学方法的教学。数学方法不仅仅针对解题过程有着指导作用,同时也是数学人文精神的一个重要载体。例如,在进行数学归纳法的教学中,问题是孔夫子的后代姓什么?学生回答姓孔。又问为什么?随之学生开始展开激烈讨论,如果他的后代都姓孔,那么则要求他的子孙中每代都有男丁,并且必须是子随父姓。把这道带入到数学课题中,则人的代数为自然数,验证n=n0时命题成立(相当于孔子姓孔),设n=k(k≥n0)时命题成立,那么如果能推断出n=k 1时命题成立(相当于姓氏在父系亲属中的传递性),则可以确定从n0起命题成立。通过这样的方法,学生可以更好的理解利用数学归纳法证明问题,两个步骤缺一不可。

(4)在数学的实际应用中渗透数学文化数学文化的价值可以分为两个方面,一是知识本身价值;二是其本身的应用价值。从应用价值上讲,数学应用是数学文化与数学学科结合产生的。例如在进行“指数函数”教学时,可以通过一些文化背景知识让学生更好的了解学习的内容。在教学过程中,老师还可以让学生了解数学在日常生活的应用,例如利用数学原理来购买、黄金分割法的应用等;同时数学也可以应用于天文学中,例如行星的发现过程、彗星的轨道运行计算等;数学也应用于经济中,如市场数据分析、广告商标设计等。通过举例子的方法让学生利用数学的眼光来看待生活,分析生活中所遇到的数学问题,并利用相对应的数学方法来解决这些问题。

四、结语

数学论文篇7

一、对中学数学思想的基本认识

“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。

通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。

关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。

属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。

从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。

二、数学思想的特性和作用

数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。

(一)数学思想凝聚成数学概念和命题,原则和方法

我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。

(二)数学思想深刻而概括,富有哲理性

各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。

(三)数学思想富有创造性

借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。

三、数学思想的教学功能

我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。

(一)数学思想是教材体系的灵魂

从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。

(二)数学思想是我们进行教学设计的指导思想

笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。

中学数学教学过程,实质上是运用各种教学理论进行数学知识教学的过程。在这个过程中,必然要涉及数学思想的问

本篇论文是由3come文档频道的网友为您在网络上收集整理饼投稿至本站的,论文欧洲杯买球平台的版权属原作者,请不要用于商业用途或者抄袭,仅供参考学习之用,否者后果自负,如果此文侵犯您的合法权益,请联系欧洲杯买球平台。

(三)数学思想是课堂教学质量的重要保证

数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。

有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。

数学论文篇8

1“研究性学习”的教学含义

随着《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的实施,以及新的高中教材在全国逐步推广使用,“研究性学习”正成为高中教学研究的热点.教育部门的各级领导、教研员、任课教师对“研究性学习”的理解还处在探索阶段,认识还不统一.尤其是对“什么是‘研究性学习’?”“什么样的课是‘研究性学习’的课?”“研究性学习与探究性学习有什么区别?”等问题在认识上还存在分歧.我们认为有必要搞清楚“研究性学习”的含义,适当扩大“研究性学习”这一概念的外延,这样我们把“研究性学习”划分了三个层次.

1.1含有课程意义的必修课

“研究性学习”最初是在《全日制普通高级中学课程计划》中提出的,它是该课程计划中规定的高中课程项目之一.把“研究性学习”、“劳动技术教育”、“社区服务”和“社会实践”统一划归为“综合实践活动”,属于必修课程,规定了课时安排和具体要求.这种意义的“研究性学习”属于课程范畴,但它没有统一的教材,属于校本课程的范围.它所涉及的教学内容不同于数学、物理、化学、地理、生物等学科,而具有明显的综合性.它一般在课下和校外进行,具有鲜明的实践性.

1.2写进课本的“研究性学习”课题

在《全日制普通高级中学数学教学大纲》中规定:“每个学期至少安排一个研究性学习课题”.新教材执行新大纲,在相应的章中单独设立一节,以“研究性课题”给出具体的教学内容,如“分期付款中的有关计算”、“向量在物理中的应用”、“线性规划的实际应用”、“多面体欧拉公式的发现”、“杨辉三角”等.教材中的“研究性学习”给出了具体的课题,这些课题大部分属于课外内容,或具有实际意义或具有研究探索的意义,但都属于数学内容.它与上一层次没有材的“研究性学习”不同,它既有教材,又具有学科性.

1.3课堂教学中的“研究性学习”

随着教学改革的深入,只用以上两种层次的“研究性学习”来培养学生的创新意识和应用意识已感到不足.如何使用课本的教材内容,使用“研究性学习”的方法,在日常教学的过程中进行学生创新意识和应用意识的培养,就成了课堂教学改革的方向.于是这种使用课本内容进行“研究性学习”的课堂教学被称之为“研究性学习”的教学模式或方法,简称为“研究性学习”.

不过开始时,有些报刊中的文章使用“自主探究性学习”的提法以和第一层次的“研究性学习”相区别.但随着改革的深入,现在大部分文章已不再使用“探究性学习”的字样,而都使用“研究性学习”了.这种变化也说明了随着课程和教学改革的深入,对“研究性学习”的理解正向纵深发展,给“研究性学习”注入了新的内涵,使它更具生命力.

三个层次的“研究性学习”其区别在于所选用的素材不同,所研究的对象不同,而使用的方法却是一样的,都具有研究性和探索性.本文下面所提及的“研究性学习”是指“研究性学习”教学模式的简称,它的真实含义是“研究性教学”.

2“研究性学习”的教学特性

如何使用课本内容,引导学生进行探索与发现的课堂教学,是我们要研究的重点.为此,我们首先应该明确以引导学生参加“研究性学习”为主的教学模式应该具备哪些特性,只有这样才能为教学设计、具体实施以及教学评价提供依据.

2.1自主性

学生的自主学习是相对于传授式学习而言的,自主性的主要标志是学生学习的主动性.学生是课堂教学的主人,他们应积极主动参与教学活动,主动获取知识,是课堂教学的主体.对主体性的评价,不能只看学生的活动所占课堂教学时间的比例,关键是看学生的思维是否真的被调动起来了,他们的学习是否积极主动.

自主性的第二个标志是个体性或独立性.课堂虽是集体学习的场所,但课堂的学习活动却是从个体开始的,其最终目的也是为了提高每一个学生的思维水平.因此,课堂教学过程中首先要强调学生个体的作用与发展,让每个学生在教学活动中尽量做到:信息自己采集,数据自己处理,问题自己提出,课题自己选定.提倡独立钻研,独立思考,独出心裁,以培养独创精神.

2.2协作性

协作性是在个体性和独立性的基础上体现的,两者的关系是相辅相成的,在学生的自主独立思维活动被调动起来之后,在解决问题的过程中,往往会遇到思维障碍,此时通过学生与学生之间的思维沟通,通过相互协作,往往会使思维障碍得以克服,并加快解决问题的速度.学生之间进行相互沟通与交流的学习也被称为“合作学习”.“合作学习”可以培养学生的协作意识和团队精神,学会与人沟通和交流的方法.

合作学习可划分为两个层次.一是小组内的合作学习,几人一组,人数不多,便于沟通,有利于互相启发,与个体研究能紧密结合.二是班级性的大型思维展示,这也是一种合作学习.这种形式的合作学习范围大,人数多,用于展示研究成果和思维过程,并开展讨论和争论.两种层次的合作学习可在课堂中多次交替开展,有利于学生创新思维的培养.

2.3研究性

前两个特性都是从学生在“研究性学习”中的地位、作用以及学习的方式等方面简述的,并没有对研究的方法、研究的过程给以突出说明.我们认为,“研究性学习”最本质的属性是“研究”二字,“研究性学习”的教学模式不同于讲授式,也不同于自学式,它的主要过程是:提出问题—研究探索—得出结论.其中所研究问题的性质很重要,无论是由学生提出,还是由教师给出,所提出的问题应该是开放的,只有素材而没有结论.这样才具有研究的意义.可以这样说,问题的开放性决定了教学模式的研究性.

“研究性学习”的研究性还应表现在研究过程中对研究方法的实践.研究不应该盲目进行,而应体现出方法性.也就是说在研究的过程中,要教给学生一些研究问题的基本方法,通过研究的实践,使他们从中学会研究的方法.我们认为学习实践研究的方法比得到的研究结论更为重要.

在“研究性学习”的教学活动中,最经常使用的研究方法有:归纳性研究方法、类比性研究方法、试验性研究方法和实验性研究方法.课堂教学过程中是否突出强调并使用相关的研究方法是“研究性学习”研究性的重要标志.

“研究性学习”的教学特性,除上面所述的三种以外,还具有开放性、实践性、创新性等其他特性.但我们认为后三种特性的本质属性不如前三种突出,有的还可以包含在前三种之中,因此就不再赘述.

3“研究性学习”的教学设计

如何进行“研究性学习”的教学设计?怎样实施课堂教学的“研究性学习”?这些问题应该是我们研究的重点.我区“研究性学习”的教学研究工作刚刚起步,只搞了几节市、区级的研究课,在听取了专家和同行们的意见之后,又进行了深入的思考,产生了一些新的想法.现将“研究性学习”在教学设计时应重点考虑的几个问题整理如下.

3.1两个体现

作为教研活动的“研究课”,在备课之初首先应该考虑这节课要给听课教师展示什么,打算起到什么示范作用,准备达到什么目的.对于“研究性学习”的研究课,应重点突出以下两条.

3.1.1体现新教学理念

什么是新的教学理念?什么是数学教学的新理念?我们认为应该从教学目的出发,在新的高中教学大纲中去寻找答案.

在新的高中教学大纲中对数学课的教学目的进行了新的划分,共分为三个层次.第一层提出的是一般能力要求,可归纳为“三层问题”,即“提出问题、分析问题和解决问题的能力”;“两种意识”,即“创新意识和应用意识”;“四类能力”,即“探究能力”、“建模能力”、“交流能力”和“实践能力”.第二层提出的是数学思维能力要求,把空间想象和运算等都包含在内.第三层是人格、品德和素质的要求,表现为“兴趣”、“信心”、“精神”、“价值”和“世界观”.

与原大纲相比较,我们认为“提出问题”的能力、“创新意识和应用意识”、“探究能力”、“建模能力”、“交流能力”和“实践能力”等都颇具新意.如果我们在备课之初抓住其中的一两项,认真地去设计在教学过程中如何实现,不失为是新教学理念的体现.

3.1.2体现新的教学设计思想

在党的“十六大”上,提出了“发展要有新思路,改革要有新突破,开放要有新局面,各项工作要有新举措”的工作要求.数学课的教学模式与教学设计怎样体现“新”字,是我们需要研究的又一个问题.我们不能墨守陈规,因循守旧或小打小闹,止步不前,而必须解放思想,打破原有的教学设计的思维框架,在教学模式和教学设计上有所突破.要大胆创新,独出心裁,别出新意,以体现课堂教学改革的新思路.

最近进行的一节以数列为载体的“研究性学习”课,包括了等差数列和等比数列的定义、通项公式、前n项和公式等主要内容.教学顺序不是先研究完等差数列再研究等比数列,而是横向与纵向交叉进行.在研究完等差数列的定义之后,类比研究等比数列的定义;在研究完等差数列的通项公式之后,类比研究等比数列的通项公式,最后再顺次研究等差数列、等比数列的前n项和公式.这种改革不失为一种大胆的尝试,不仅课堂教学容量大,而且知识之间的横纵向联系十分紧密,不仅学生在研究方法上有所收益,而且有利于知识结构的形成.

3.2两个突出

一节课只有45分钟,不可能涉及过多的教学目的,不可能面面俱到,因此一节“研究性学习”研究课的教学设计抓主要矛盾和主要过程是十分必要的.

3.2.1突出一个主题

主题的确定,可以从教材内容上考虑,可以从教学方法上考虑,但最主要的还是从教学目的和培养目标上考虑.一节课如果从总的教学目标考虑,不应有过多的项目,要把主题选好,然后再在这个主题下进行具体设计.

最近进行了一节函数复习的“研究性学习”研究课.开始时打算由两个具体的函数解析式,通过研究它的定义域、值域、奇偶性、单调性、最大(小)值,并画出它的草图来复习函数的概念、性质与图象.但后来任课教师考虑到给出的函数解析式过于抽象,不如由实例引出,使其具有实际意义.这是个很好的建议,并在此基础上又作了进一步的发展,既然引入的是实例,那么结尾也应给予呼应,也应再回到应用问题.于是前后共出现三道应用题,并且还涉及了字母的讨论.这样一来,由原来侧重于创新意识,变成了应用意识与创新意识并重;由一个主题变成了两个主题.如果照此设计实施,可能一个目标也完成不了.又经过讨论,最后决定只由应用问题引出函数解析式,把由解析式到函数图象的“研究性学习”、培养创新意识确定为本节课的主题.

3.2.2突出一条主线

我们这里所说的主线是指教师与学生的关系、学生与学生的关系在“研究性学习”中的位置.作为“研究性学习”的研究课,必然要把学生的自主学习放在首位.在课堂中,学生的自主性与协作性的关系如何处理?以哪一个特性为主更好呢?在常规教学中学生主体作用的发挥、课堂活跃的程度,往往用教师提问次数的多少、学生回答问题所占时间的多少来评价.为了改变这种现象,我们提出,在现阶段“研究性学习”的研究课,要突出“合作学习”的作用.一节课中,在不同的教学环节应设计出不同类型的合作学习方式,以“合作学习”为主线,将“合作学习”贯穿于课堂教学的始终.

3.3两个侧重

无论什么课型,就教学过程而言,都可以划分为引入环节、主体环节和结尾环节.不言而喻,一节课的中心和关键必然是中间的主体环节,必然要把设计的重点放在这一环节中.正因为如此,往往容易忽视对引入和结尾的教学设计,于是我们在“研究性学习”研究课的教学设计中,加强了对这两个环节的考虑.

3.3.1侧重引入环节的教学设计

引入环节是课堂教学的首要环节.这一环节设计得好坏,直接影响一节课的教学效果.对于“研究性学习”的研究课,引入环节的教学设计,我们提出了三层考虑,即提出问题—制造悬念—激发兴趣.

问题的提出,可以由教师直接给出,也可以由学生自己提出;可以由实际问题引出,也可以用数学问题引出;可以由旧内容引出,也可以开门见山直接给出.但无论采用哪种方法,都要注意贯彻主题和主线.能由学生提出的,最好就不由老师给出;能由实际问题引出的,最好就不用数学问题引出;能由旧知识引出的,最好就不开门见山.在提出问题时,应该是先大后小,先难后易,先一般后特殊,以给学生多留一些思考的余地,少一些提示,以增加课堂“研究性学习”的气氛.

制造悬念是设置问题的一种技巧.对学生那些似知非知,似懂非懂,似是而非的新内容,对那些可能产生负迁移,可能发生错误的新方法,教师应精心设计一些带有悬念的问题,让学生自己思考,“勾”起学生参与解决问题的欲望,最终达到激发兴趣的目的.

3.3.2侧重小结环节的教学设计

复习小结是课堂教学的最后一个环节,常规做法是由老师或学生总结本节的知识内容,也有教师更深入一步,总结本节课所涉及的重要思想和方法.但作为“研究性学习”的研究课,到此我们仍觉不够.由于“研究性学习”的课堂教学把研究方法放在了重要的位置上,因此我们提出,在总结数学知识和数学方法的基础上,还应更深入一步,“在学完了这节课之后,你还学会了哪些解决问题的一般方法?”希望学生自己总结出在思维方法上的收获.开始时,学生肯定会不适应,说不到点子上.我们觉得,随着改革的深入,在多次使用“研究性学习”的教学模式进行教学之后,学生解决问题的方法会逐渐积累.通过总结,解决问题的能力会逐步提高.

4两个希望

教学设计是在课堂教学之前教师的教学设想,但在课堂教学具体实施的过程中,往往很难完全实现,这是正常的现象.尤其是在调动学生参与,启发学生思维时,课堂上学生会怎样表现?设计与实际之间往往会有较大的差异,设计时难度也会更大.于是,我们只好用“希望”二字来表达我们对课堂教学中学生活动的一种企盼,也是对教师在教学设计时提出的较高要求.

4.1希望产生障碍或出现错误

研究的过程从来就不可能一次成功,产生思维障碍,出现这样或那样的错误是正常和自然的.为了使学生学会思维、实践研究的方法,我们希望教师在全班讨论时,不要只叫会的,只听对的,相反,应从出现错误的,产生障碍的开始,要求学生不要只讲结果而应讲出产生错误和出现思维障碍的原因,讲出解决的办法,讲出思维的全过程.

没有失败,哪有成功?我们也应该让学生尝试失败,并从中总结经验和教训,逐渐学会由失败走向成功.

数学论文篇9

数学小论文(1)今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。

后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。

画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。

解是:26-2=24(岁)

24÷(3-1)=12(岁)

12-2=10(年)

答:10年后爸爸的年龄是小华的3倍。

妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。

(26 10)÷(2 10)=36÷12=3

耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

数学小论文(2)我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。

今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9积中有1个奇数数字。33×33=1089积中有2个奇数数字。333×333=110889积中有3个奇数数字。3333×3333=11108889积中有4个奇数数字。……

从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。

做了这道题,我知道做数奥不能求快,要求懂它的方法。

数学小论文(3)以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。然而,有一件事却改变了我的看法。

那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。

从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。

数学小论文(4)生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。

记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以0.8,也就是35*0.8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*0.8=28(元),40*0.8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈0.045,32/650≈0。049,0.0490.045,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。

数学论文篇10

探究式教学是一种积极的教学过程,在教学中教师开展积极的指导,学生在教师的指导下,以主体的姿态进行探究式学习,有准科研的氛围和意境,同时有会增加实践过程和环节,对于提高学生的主动性和创造精神是很有帮助的。强调探究式教学的重要性是想找回探究教学在教学中应有的位置,适应素质教育的要求,并非贬低接受式教学的价值,评价则是在测量的基础上,对于这样的教学模式的一种价值判断活动。

二、高中数学探究式教学价值和意义

1.保持独立的探究兴趣

在准科研的氛围中突出学生的积极性、创造性,促使学生养成发现问题、解决问题,努力创新的数学品质和心理。

2.增进学生独立思考的能力

探究式教学模式是在问题的解决过程中获得对知识的理解和运用,因此能启发学生的思考,这样的数学素质的培养培养过程对于高中学生是必要的,它为学生在今后的工作中能独立的思考和解决实际问题,提供了必要的锻炼过程,是目前素质教育的重要环节。

三、高中数学探究教学的策略

1.合理设计教学梯度,设计探究题目

因材施教是教育必须遵循的原则,任何脱离了学生的基础和接受能力的教学都是失败的。学生只有跟得上老师的思路才能配合老师搞好教学,这就要求教师必须了解学生的基础、掌握教学大纲、熟悉教材,这样才能把握教学的中心,突出重点,并通过设计合理的教学梯度、分散难点,设计合理的探究题目和内容,使学生在老师的引导下,开动脑筋积极思考,师生互动,达到教与学的共鸣。

2.精讲多练

练习是学习和巩固知识的唯一途径,目前学生课余时间十分有限,如果将练习全部放在课后,时间难以保障。另外,对于基础较差的学生,如果没有充分的课堂训练,自己独立完成作业很困难,一旦遇到的困难太多,就会选择放弃或抄袭。因此,精讲教学内容,腾出更多的时间做课内练习是十分必要的,这不仅有利于学生及时消化教学内容,而且有利于教师随时了解学生掌握知识的情况,及时调整教学思路,找准教学梯度,使教与学不脱节,保证教学质量。

3.密切知识与物理背景和几何意义的联系

几乎每一个高中数学知识都有它产生的物理背景和几何意义,让学生了解每个知识点的物理背景可以使学生知道该知识的来龙去脉,加深对知识的记忆和理解,知道其用途;而几何意义则可增强知识的直观性,有利于提高学生分析和解决问题的能力,所以在教学中无论在知识的引入还是在知识的综合运用中都要与它的物理意义和几何意义紧密结合起来。这样便于学生接受和理解教学内容,提升数学素质。

4.加强实验教学环节

要把理论教学和实验教学有机地结合起来。例如,我们在理论课教学过程中经常遇到一些抽象的概念和理论,由于不易把图形画出来,就不能利用数形结合的手法加以直观化,致使学生难以理解,而数学软件有强大的绘图和计算功能,它恰恰能解决这些问题,所以在实验教学中,不仅要讲基本实验命令,更重要的是要选择一些有利于学生理解微积分理论和概念的实验让学生去做,将理论教学和实验教学结合起来,让学生带着问题去实验。例如让学生用数学软件做出图形来判断函数y=cosx在(-∞, ∞)内是否有界,并观察当x∞时这个函数是否为无穷大?通过这个实验学生不仅可以掌握作图的方法和命令,而且还能真正理解无穷大和无界的区别和联系,同时可以让学生惊叹抽象的数学在一定程度上可以变成可以看得见的富于直观形象,更加启迪人们思想的“可视化数学”。每一次课都选择两、三个这样的实验,使实验教学真正成为理论教学的补充和延伸。

参考文献:

[1]李嫦虹.学生数学素质分析与评价系统的模型[j].泰山学院学报,2006,5:5-7.

[2]范有芳,高雪芬,周蔚.高等数学现状的调查分析[j].浙江理工大学学报,2005,3.

[3]杨辉.教学质量评估系统算法模型[j].长春师范学院学报,2005,10:93-97.

[4]于坚.高等数学探究性学习模式的研究与实践[j].教育与职业,2006,4:23-25.

[5]王惠娟.研究生业务素质综合评价体系及其数学模型[j].安徽工程学院学报2006,3:40-43.